Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Chem Inf Model ; 63(11): 3423-3437, 2023 06 12.
Article in English | MEDLINE | ID: covidwho-20244704

ABSTRACT

Fragment merging is a promising approach to progressing fragments directly to on-scale potency: each designed compound incorporates the structural motifs of overlapping fragments in a way that ensures compounds recapitulate multiple high-quality interactions. Searching commercial catalogues provides one useful way to quickly and cheaply identify such merges and circumvents the challenge of synthetic accessibility, provided they can be readily identified. Here, we demonstrate that the Fragment Network, a graph database that provides a novel way to explore the chemical space surrounding fragment hits, is well-suited to this challenge. We use an iteration of the database containing >120 million catalogue compounds to find fragment merges for four crystallographic screening campaigns and contrast the results with a traditional fingerprint-based similarity search. The two approaches identify complementary sets of merges that recapitulate the observed fragment-protein interactions but lie in different regions of chemical space. We further show our methodology is an effective route to achieving on-scale potency by retrospective analyses for two different targets; in analyses of public COVID Moonshot and Mycobacterium tuberculosis EthR inhibitors, potential inhibitors with micromolar IC50 values were identified. This work demonstrates the use of the Fragment Network to increase the yield of fragment merges beyond that of a classical catalogue search.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Humans , Retrospective Studies , Databases, Factual , Crystallography
2.
J Cheminform ; 14(1): 22, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1785168

ABSTRACT

We present several workflows for protein-ligand docking and free energy calculation for use in the workflow management system Galaxy. The workflows are composed of several widely used open-source tools, including rDock and GROMACS, and can be executed on public infrastructure using either Galaxy's graphical interface or the command line. We demonstrate the utility of the workflows by running a high-throughput virtual screening of around 50000 compounds against the SARS-CoV-2 main protease, a system which has been the subject of intense study in the last year.

SELECTION OF CITATIONS
SEARCH DETAIL